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SUMMARY

A simple algorithm has been developed that describes the vertical structure of
the visible extinction coefficient and the liquid water content (LWC) for low
visibility/low ceiling conditions. The algorithm is based on a
parameterization of several sets of data describing the vertical structure of
hazes, fogs, and low stratus clouds. The algorithm needs as input values the
value of the visible extinction coefficient oe(O.S55m) or LWC, and the cloud
ceiling height. The form of the algorithm is

ae or LWC = A exp(B exp(Cz)) , (6a)

where the coefficients A and B are determined by boundary values and the
initial value at the surface, C determines the increase of a or LWC with
altitude, and z is the altitude. The visibility can be readi1y determined
from the visible extinction coefficient or vice versa.

When the fog is so thick at the surface that the cloud ceiling height can not
be Ieternined (i.e., the sky is obscured) or one is already in the cloud, the
value of the coefficient C is directly related to the increase in LWC as one
rises in altitude at the wet adiabatic lapse rate and to the change in droplet
size distribution associated with convective processes. When a haze or fog is
present and the cloud ceiling height zc can be determined, the coefficient C
is related to the cloud ceiling height via the equation

C 1 1 ln(E/A) (7)C = c Inln(D/A) 7

where A, D, and E are determined by the boundary conditions and initial values
at the surface, as explained and defined in the text.

Thus, the vertical structure in visibility or LWC can be determined for low
visibility/low stratus cases on the basis of two inputs: surface visibility
and cloud ceiling height. The results can be extended to other wavelengths
via numerous wavelength scaling laws that have been empirically derived.

The utility of this algorithm is that it relates the vertical structure to
surface observations of visibility and cloud ceiling height. These latter
quantities are commonly recorded in meteorological observations taken
throughout the world. Therefore, frequencies or probabilities of occurrence
can be determined for the vertical structure of low visibility/low ceiling
conditions. The impact of these conditions on sensor and system performance
can now be more readily calculated.

4
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INTRODUCTION

The development of precision-guided munitions and sophisticated electro- I:
optical sensors has placed new emphasis on the term visibility.
Traditionally, visibility has referred to visual estimates of the range within
which certain objects were discernable against the horizon. Often the
visibility is measured and recorded automatically by several types of
visibility meters. In either case, the emphasis has been upon the horizontal
visibility. Increasingly, United States and North Atlantic Treaty
Organization (NATO) military forces are relying on new surveillance and weapon
systems whose sensors must function over a slant path, where variations in the
vertical as well as the horizontal visibility are important.

In low visibility situations, due either to haze or fog, a growing body of
observations' -' are showing that the measured visibility at the surface is not
representative of conditions a few hundreds of meters, or even tens of meters,
above the surface. Thus, "slant path visibility" can be significantly
different from "horizontal visibility." In a significant fraction of the
cases the visibility becomes worse as the height above the surface
increases. These cases are be of special concern in this report.

Based on numerous vertical profiles of droplet size distributions, an
empirical model of the vertical structure of hazes and fogs has been
developed.' This earlier work is now extended in this report for low
visibility/low stratus conditions. Two quantities of physical significance
are selected: the extinction coefficient at a wavelength of O.55um, which
directly relates to the visibility (see appendix A), and the LWC, which
relates to many microphysical properties of fogs and which scales directly to

'Hoihjelle, D. L., et al, Balloon-borne Aerosol Particle Counter Measurement
Mode in Wintertime at Gratenwohr, West Germany, ELUM-DR-lb-3, US Army
Atmospheric Sciences Laboratory, White Sands Missile Range, NM, 1976.

'Pinnick, R. G., et al, Vertical Structure in Atmospheric Fog and Haze and Its
Effect on IR Extinction, ASL-IR-UUIU, US Army Atmospheric sciences Laboratory,
White Sands Missile Range, NM, 1978.

'Loveland, R. B., et al, Atmospheric Characterization Measurements for
Copperhead Ground Fog Experiment, internal Report, U5 Army Atmospheric
Sciences Laboratory, White Sands Missile Range, NM, 1978.

4Llndberg, J. D., et al, Vertical Distribution of Fog and Haze Near Greding,
Germany, During February and March 19 u, Internal Keport, US Army Atmospnerlc
Sciences Laboratory, White Sands Missile Range, NM, 1980.

'Lindberg, J. D., Compiler, Early Wintertime European Fog and Haze: Report on
Meppen 80, ASL-TR-0108, US Army Atmospneric Sciences Laooratory, white Sands
Missile Range, NM, 1982.

'Duncan, L. D., J. D. Lindberg and R. B. Loveland, An Empirical Model of the

Vertical Structure of German Fogs, ASL-TR-0071, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, WM, 1980.
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the extinction at many infrared wavelengths.7  The algorithm that is developed
describes the vertical structure of the extinction coefficient and LWC as a
simple function of two variables: the initial value at the surface and the
cloud ceiling height.

BASIS AND DERIVATION

Some detailed data on the vertical structure of fogs and hazes have been
gathered in the Federal Republic of Germany (FRG) on several different
occasions.' I Droplet size distributions in the O.23um to 47 jm range have
been measured from a balloon-borne instrument, thus yielding vertical
profiles. LWC and extinction coefficients at desired wavelengths can be
calculated from these measured droplet size distributions.

The vertical structure of these profiles has been examined previously by

Duncan et al,6 who characterized the vertical structure in the form

y a a x + b ' ,(1

(1)

'Pinnick, R. G., et al, Relationships Between IR Extinction, Absorption and
Liquid Water Content of Fogs, ASL-TR-0037, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM, 1979.

'Hoihjelle, D. L., et al, Balloon-borne Aerosol Particle Counter Measurement
Mode in Wintertime at Gratenwohr, West Germany, ECM-DR-7O-3, US Army
Atmospheric Sciences Laboratory, White Sands Missile Range, NM, 1976.

'Pinnick, R. G., et al, Vertical Structure in Atmospheric Fog and Haze and Its
Effect on IR Extinction, ASL-TR-UO1U, US Army Atmospheric Sciences Laboratory,
White Sands Missile Range, NM, 1978.

'Lindberg, J. D., et al, Vertical Distribution of Fog and Haze Near Greding,
Germany, During February ana Marcn 198u, Interna Report, US Army Atmospneric
Sciences Laboratory, White Sands Missile Range, NM, 1980.

5Lindberg, J. D., Compiler, Early Wintertime European Fog and Haze: Report on
Meppen 80, ASL-TR-0108, US Army Atmospnerlc icences Laboratory, wnhte Sands
Missile Range, NM, 1982.

"Duncan, L. D., J. D. Lindberg and R. B. Loveland, An Empirical Model of the
Vertical Structure of German Fogs, ASL-TR-0071, US Army Atmospnerlc Sciences
Laboratory, White Sands Missile Range, NM, 1980.
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Figure la. Relationship between the extinction coefficient (0.551m) at
altitudes z and z + 20 m. The vertical lines are the error bars
for the data (after Duncan et all).
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where x = log=,D(z), y = log10 D(z + 20), a' and b' are coefficients that were
chosen to fit the data, and D(z) is the value of the desired variable (e.g.
LWC) at the altitude z; D(z + 20) is then the value of this variable at an
altitude of z + 20 m. Thus, one can work stepwise from the surface up through
the cloud boundary layer. Figures la and lb show the fits of equation (1) to
the data.6

Two points should be noted about figures la and lb before proceeding. First,
each figure shows that two lines must be used to fit the data set. The point
of intersection of these two lines does have physical significance, as will be
shown in the next section. Second, the coefficients of the equations for the
two lines have values such that there is a point at which y = x (i.e.,
log1 oD(z + 20) = log .D(z)). This means that there is an upper and a lower
bound to the variables and their vertical profiles, or in other words there is
a point where the vertical profile of ce or LWC no longer increases (or
decreases) with altitude. Again, the physical interpretation will be
discussed in the next section.

Since the variable y in equation (1) is simply the variable x(z) at an
altitude of z + 20 m, the equation can be rewritten as

x(z + 20) - x(z) = (a' -1)x(z) + b' (2)

where x(z) has been subtracted from each side. Dividing each side by 20 m
(i.e., Az) and recognizing that x(z + 20) - x(z) is Ax, equation (2) becomes

Ax (a' -1) b'
z 2 x ,(3)

which can be recast as a simple differential equation of the form

dx
S + ax = b (4)

This has a general solution of the form

bx -az bxa a c-3) (5)

$Duncan, L. D., J. D. Lindberg, and R. B. Loveland, An Empirical Model of the
Vertical Structure of German Fogs, ASL-TR-0071, US Army Atmospheric Sciences
Laboratory, White Sands Missile Kange, W4, 1980.
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where c is a constant of integration determined by the boundary conditions,
and a and b can be found from figures la and lb and equations (1) and (3).

Since x = log~oD(z), the final form of the solution of the extinction
coefficient (ce(O.5 5um)) or LWC is

oeor LWC = A exp[B exp(Cz)] , (6a)

where

A = 10 b/a (6b)

B (ln 10) (c- ) (6c)

where In 10 = 2.3026 .... and finally

C -a . (6d)

The constant of integration c represents the logso of the initial or starting
b

value of ae or LWC; b represents logo of a bounding value for 0e or LWC.

Thus, the coefficient B may be recast in the form

B = n D - 1n A = ln() (6e)

where D is the initial or starting value of the variable and A is the boundary
value. (Note the shift to natural logarithms and exponentials.)

Tables la and lb give the values of the coefficients in equation (6a) for the
vertical profiles of the extinction coefficient and LWC as parameterized in
figures la and lb. Note that there are two equations in each figure, one for
each line segment, and therefore two sets of values for each variable.

13



TABLE la. EXTINCTION COEFFICIENT

e (O.55um) A exp[B exp(Cz)] (km)

Range of 0.398 to 7.08 km 7.08 to 92.1 km
Appl icabil ity Haze/Fog Th Ick.Fog/Cl oud

A 0.398 km-' 92.1 km-'

B In (D/A) In (D/A)
C 0.0125 m-0.014 m-

D initial value initial value

*C also may be calculated as an explicit function of cloud ceiling height; see

table 2 in the next section.

TABLE lb. LIQUID WATER CONTENT I.

LWC = A exp[B exp(Cz)] (g/m')

Range of 8.66(-5)* to 2.34(-2) g/ml 2.34(-2) to 4.64(-1) g/m

Applicability Haze/Fog Thick Fog/Cloud

A 8.66(-5) g/ms 4.64(-1) g/m3

B In (D/A) In (D/A)

C 0.008 m -0.015 m

D initial value initial value

*8.66(-5) = 8.66 x 10-

**C also may be calculated as an explicit function of cloud ceiling height;

see table 2 in the next section.

PHYSICAL INTERPRETATION

It is now worthwhile to examine the two sets of coefficients for equation (6a)
and to determine the physical significance of the intersection of the two
lines shown in figures la and lb. For this purpose it is most useful to
examine the algorithm for LWC. The two lines in figure lb intersect at a
value for the LWC of 0.0234 g/m'. Analyses at the US Army Atmospheric
Sciences Laboratory (ASL) of nunerous vertical profiles have shown that a
cloud boundary can be reasonably defined for a value of LWC between 0.02 and

14



0.03 g/re. Independent analyses of numerous cases of thick fogs and clouds
have also shown that 0.03 g/m is value representative of the boundary or
transition between fog and a thick fog/cloud.'

The point of intersection of the two lines in figure lb thus represents a
transition between two regions of droplet growth. In the lower region,
representative of hazes and fogs, the growth of droplets is governed more by
aerosol hydration below and at supersaturation, radiative cooling of droplets,
and heat transfer to the ground. In the upper region, representative of thick
fogs and clouds, the droplet growth and hence LWC increase is governed more by
convective motion. The transition takes place where LWC reaches a value in
the range of 0.02 to 0.03 g/m, which represents either a fog sufficiently
dense and of sufficient vertical depth that convective cells can form,"0 or
the lower boundary of a stratus cloud. The precise value of 0.0234 g/m is
not significant in itself, but only represents an average of several sets of
data.

Figure 2 shows the comparisons between LWC as a function of altitude, as
calculated from equation (6a), and LWC increase due to air rising at the wet

I I I

Ie /

I. I
I. !

200* /

T Irv /0

21I/ / /

100 0 / / " 1"2 lg("

/ ,

/ ~

IQUI 1) 'ATER ('()NT, T f/m ):1

Figure 2. Comparison of LWC as determined from equation (6a) and the increase
in LWC due to a parcel of air rising at the moist adiabatic lapse
rate.

'Rogers, C. W., and J. T. Hanley, An Algorithm for the Increase of Liquid
Water Content with Height in Fog and Water Hazes, Calspan Report No. 6711-M-1,
Butalo, NY, 1913U.
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adiabatic lapse rate (see appendix B). Several curves are shown for the
latter case, illustrating the effects of temperature and lapse rate. The
reasonable agreement between the two types o- cu,-ves shows that equation (6a),
with the second set of coefficients tron taole Ib, is an average
representation of the increase in LWU due to situratea dir rising at the wet
adiabatic lapse rate. Physically, this means thd when a fog becomes
sufficiently dense, overturning motions in the fog begn,9 1O so that further
droplet growth and LWC increases are governed by convective processes and the
wet adiabatic lapse rate. The presence of a cloud already indicates
convective motions. Deviations from the wet adiabatic lapse rate may be
expected near the earth's surface and the boundaries of the cloud.

The value of the coefficient A in equation (6a) is determined from setting y =
x in figures la and lb. For the upper region, this yields a value of 0.464
g/m, which is in good agreement with the fact that upper bounds to LWC in
stratus clouds are on the order of 0.4 to 0.5 g/m. I Of course, the values
can be smaller for thinner clouds that are not undergoing strong radiative
cooling on top. Again, the precise vaILe of 0.464 g/ml only represents an
average from everal sets of data. For the lower region, the boundary value
is 8.66 x 10- g/m'. There are two interpretations regarding the significance
of this value. On the one hand, this corresponds to visibilities on the order
of 7 to 10 km (light haze), which is representative of a haze aerosol that is
beginning to grow as the relative humidity rises above 80 percent.1 2 On the
other hand, this value also represents the lower sensitivity of the
instrumentation used to measurr the droplet size distribution. In actuality,
both effects are probably present, and this value thus represeits a practical
bound for the condition of lowered visibility. Once again, it is an average
from several data sets.

In an analogous manner, the point of intersection of the two lines in figure
la for the 0.554n extinction coefficient can be related to changes in droplet
size distributions. These changes are in turn due to the change in physical
processes responsible for the two representations for LWC in figure lb.
Analysis of the vertical profiles of LWC and calculated extinction
coefficients from the data obtained near Meppen, FRG, in 19801 shows that the

'Roach, W. T., et al, "The Physics of Radiation Fog: I - A Field Study,"
Quart J Roy Meteorol Soc, 102:313-333, 1976.

'Pilie, R. J., et al, "The Life Cycle of Valley Fog. Part II: Fog
Microphysics," J Appl Meteorol, 14:364-374, 1975.

',Pruppacher, H. R., and J. 0. Klett, Microphysics of Clouds and
Precipitation, D. Reidel Pub Co, Dordrecht, Holland, 1978.

'Shettle, E. P., and R. W. Fenn, Models for the Aerosols of the Lower
Atmosphere and the Effects of Humidity Variations on Their Optical Properties,
AFGL-TR-/9-OZ14, Air Force Geophysics Laboratory, Hanscomb AFB, MA, 1979.

sLindberg, J. D., Compiler, Early Wintertime European Fog and Haze: Report on
Meppen 80, ASL-TR-0108, US Army Atmospheric Sclences LaBoratory, wnite Sands
Missile Range, NM, 1982.
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altitudes are the same for the points where ae equals 7.06 km- and LWC equals
0.0234 g/m'. In a similar manner, the upper bound of 92.1 km- ' for
represents the limiting value of transmission in a stratus cloud, while the
value of 0.398 km-1 represents the lower limit to extinction, or the limiting
value of visibility in a light haze, beyond which the algorithm should not be
applied. As before, these boundary values are averages from several sets of
data.

Figures 3a and 3b show plots of the vertical profiles of the extinction
coefficient and LWC using equation (6a) and tables la and lb. Different
initial values have been selected to show the altitude dependence of the
various profiles. The values of ae and LWC represented by the intersection
points of the two lines in figure la and lb are shown by dashed vertical
lines. The point where the vertical profile intersects the dashed vertical
lines is the nominal lower cloud boundary; the altitude is indicated in
parentheses. The vertical profile up through the cloud can be obtained by
adding the profile to the right of the dashed line into the profile to the
left at the cloud boundary, and then extending it up to the top of the
cloud.

VISlIBILTY (kin)

II.. #.I 4). I

i' II' .J I ...\I ~ 'll (

II I11 Ill, I llili k Ill , lil I+ II

(2iimI

JIO

O'- (.55pm) (km

Figure 3a. The vertical profile of the 0.55tm extinction coefficient for
various initial values. The profiles can be extended to the
right of the dashed line by adding the profile starting at

e = 7.08 km- 1 and starting at the altitude of the cloud boundary.
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Figure 3b. The vertical profile of LWC for various initial values; similar

to figure 3a.

In this current formulation, the initial value of o or LWC determines the

height of the lower cloud boundary. In practice, it is the cloud ceilingheight and the surface value of visibility that are the observed variables. k

(In some rare instances LWC is also measured at the surface.) The
deterministic nature of equation (6a) comes from the fact that the coefficient
C is single-valued. It has been shown previously that for thick fog/cloud VI
conditions, this value is related to the increase in LWC along a wet
adiabat. For haze/fog conditions, the value of C given in tables la and lb
represents an average of several different haze and fog cases. Because the
intersection points in figures la and lb can be related to the cloud boundary,
it is also possible to express the value of C as a function of the observed
cloud ceiling height zc:

_ In (E/A)]C-Z c I[n (D/A)" (7)

where E is the value of the extinction coefficient or LWC at the upper bound
of the range of applicability (i.e., the values of ae or LWC represented by

18



the dashed vertical lines in figures 3a and 3b) and other coefficients are
defined as before. Table 2 gives the values that are appropriate in each
case.

Figures 4a and 4b illustrate the cases where one initial value for Ge and LWC
has been picked, but several different ceiling heights have been specified.
The solid line gives the average vertical profile from tables la and lb.
Thus, by the use of equations (6a) and (7), the vertical structure for low
visibility/low-lying stratus conditions can be specified by the initial value
at the surface and the cloud ceiling height.

VIS IBIITY (kmn)

MO. 1.0 41.1
I I I

:300 ((:I,,

0f" M.155 W. )
= 

%,-%ip I,%mpoz )

200

2/

I (K)

10(.##.l- 0'. II.IPm) (km

Figure 4a. The vertical profile of the O.551im extinction coefficient for
various cloud ceiling heights. The solid line shows the averaged
profile using table la.
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Figure 4b. The vertical profile of LWC for various cloud ceiling heights.
The solid line shows the averaged profile using table lb.

TABLE 2. COEFFICIENT C AS A FUNCTION OF CEILING HEIGHT

C= i n (D/A)1

Range of Extinction Coefficient Liquid Water Content

App1icability 0.398 to 7.06 km-' 8.66(-5) to 2.34(-2) 9i/mn

zc Cloud ceiling height (n) Cloud ceiling height (mn)

E 7.08 km-
' 0.0234 g/m"

A 0.398 km 8.66(-5) g/m'

0 initial value initial value

20
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COMPARISONS WITH DATA AND EXAMPLES OF USE

The empirical representation' of the vertical structure shown in figures la
and lb was based upon the data gathered in Grafenwohr, FRG.' I A validation
of the model would be to compare the algorithm based on these data with an
independent set of data obtained in Meppen, FRG.s

Figure 5 shows the comparison between the algorithm for LWC and the data
obtained from the balloon-borne particle spectrometer at Meppen. In this
instance, the fog was so thick that no ceiling height could be obtained, and
the initial value of LWC was greater than the dividing line value of 0.0234
g/ml. Therefore, the right-hand column of table ib is used to obtain the
value of the constants used in equations (6a) through (6e); an initial value
of 0.04 g/ml is estimated at the surface from the data. Substituting these
values into equation (6a), one has

LWC = 0.464 exp[-2.451 exp(-0.015z)] (6a-1)

The comparison with the data in figure 5 is quite good. In general, the
agreements are very good for several cases that were tested, with the values
calculated by the algorithm being within t50 percent of the data. These
accuracies are within the accuracy limits that can be placed on the data
itself.*

6Duncan, L. D., J. D. Lindberg and R. B. Loveland, An Empirical Model of the
Vertical Structure of German Fogs. ASL-TR-0071, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM, 1980.

'Hoihjelle, D. L., et al, Balloon-borne Aerosol Particle Counter Measurement
Mode In Wintertime at Grafenwonr, West 6ermany, ECOM-DR-lb-3, US Army
Atmospheric Sciences Labora'ry, White Sands Missile Range, NM, 1976.

2Pinnick, R. G., et al, Vertical Structure in Atmospheric Fog and Haze and Its
Effect on IR Extinction, ASL-TR-QUID, US Army Atmospheric Sciences Laboratory,
White Sands Missile Range, NM, 1978.

sLindberg, J. D., Compiler, Early Wintertime European Fog and Haze: Report on
Meppen 80, ASL-T.-3108, US Army Atmospheric Sciences Laboratory, White Sands
ISS!iTlange, NM, 1982.

*J. 0. Lindberg, private communcation.
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Figure 6 shows the comparison between the algorithm and the measured LWC for a
case where a cloud ceiling height can be estimated. The visibility at the
surface was estimated at 3 km, with thin fog (or heavy haze) being recorded as
an obstruction to vision. The cloud ceiling height was estimated from the
data as the point where the dividing line value of 0.0234 g/m' intersected the
LWC profile, z = 150 m. (It was night when this profile was taken, and no
reliable visuaS estimate of the cloud ceiling height could be made.) Using
the right-hand column from table 2, and an estimated initial value for LWC at
the surface of 0.0001 g/m3 , equation (7) for C yields

1 n[ln(O.0 234 /O'0 000 8 6 6)] - 0.0244 m"
C = 150 m ln(0.0001/0.0000866 . (7-1)

This value of C is now used along with the initial value at the surface in the

left-hand column of table lb to define the coefficients in equation (6a)

LWC = 0.0000866 exp(O.1439 exp(O.0244z)) , (6a2)

which defines the LWC profile from the surface to the lower cloud boundary.
The LWC profile inside the cloud is now found by using the right-hand column
of table lb and 0.0234 g/m' as the initial value, yielding

LWC = 0.464 exp[-2.987 exp(-0.015z')] , (6a-3)

where z' is now the altitude above the cloud base. Again, the comparison of
the calculated LWC profile with the data of figure 6 is quite reasonable;
comparisons of several profiles of this type with similar cases from the ASL
Meppen 80 tests likewise showed good agreement.
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Figure , shows the comparison of the algorithm for the visible extinction
coeffi.ient with that computed from the balloon-borne data used to calculate
the LWC profile in figure 6. The estimated ceiling height is found by

II - -1 1) I Io| (

\ '1' Ii -*

- \1I I 1 1 l ,

-- 'IH' ' I II Ji- '

|44) Ii'

II4I / I ,IllI)
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II) I I l I ll 11 II 10*" I'I

FXTIM("I'I4\ AT I. u' (km

Figure 7. The comparison between the algorithm for the vertical structure
of the 0.55um extinction coefficient and data for the case of
thin fog and low stratus clouds

_!

extending the dividing line value of 7.06 kr' upward until it intersects the
data profile. As before, the estimated cloud ceiling height is 150 m. Th
value of the coefficient C is calculated by using an initial value of 0.4 km-
and the coefficients from the left-hand column of table 2, yielding

C = I in[ n7.06/0.398)] 0.0424 m (72
150 m In 0.4/0.398) (7-2)

This value of C, along with the initial value at the surface, is used in the
left-hand column of table la to define the coefficients in equation (6a)

ae(O.5 5um) = 92.1 exp[-2.566 exp(-0.014z')] (6a-4)
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where z' is the altitude above the cloud base. Figure 7 shows that the
comparison between the data and the algorithim is quite good.

In each of figures 5 through 7 the level of the cloud top could be determined
from the data. In practice, the top boundary height of a cloud deck is
usually not known, nor does the algorithm itself determine where the top of
the cloud should be. Numerous examples of vertical profile data from the ASL
Meppen 80 field program showed that low-lying stratuJs clouds have thicknesses
mainly in the range of 100 to 300 m. As a rather rough average, a nominal
cloud thickness of 200 m can be selected; this value allows the LUG to grow to
0.4 g/n3, which is a reasonable upper limit. Therefore, when the cloud
thickness is not known, a default value of 200 mi is suggested for use in the
algorithm. In practice, the actual cloud thickness is riot a crucial
quantity. The attenuation at the cloud base increases so rapidly with
increasing altitude that after the first 50 to 1')0 m of cloud thickness,
essentially no transmission in either the visible or infrared occurs.

DISCUSSION AND CONCLUSIONS

The preceding sections describe a simple algorithm that has been developed to
describe the vertical structure of the visible extinction coefficient and LUG
for low visibility/low ceiling conditions. The visible extinction coefficient
has been selected because of its direct relationship to visibility, which is a
commonly observed and recorded meteorological quantity, and because of the
numerous existing scaling laws that relate the visible extinction coefficient
to the desired infrared extinction coefficient. LUG has been selected because
of its relation to many fog and cloud microphysical properties and because it
directly scales to the extinction or absorption coefficients at several
infrared wavelengths.

The algorithm is applicable in cases of lowered visibility (< 7 kin) and low or
obscured ceilings. The algorithm has two sets of coefficients, each set
applicable to a different regime. The first regime is for hazes and fogs,
where the visibility ranges from 7 km down to approximately 0.4 kin, and a low
cloud ceiling is present. In this regime the algorithm needs as input values
the visible extinction coefficient or LUG, and the cloud ceiling height. The
second regime is for thick fogs (visibility < 0.4 kin), where the sky is
obscured, or when one is already in the cloud. Here the input parameter is
either the visible extinction coefficient or LUG; appropriate boundary values
have been determined from the data. Because the depth of thick fog and the
vertical thickness of low-lying stratus clouds are not easily obtainable
quantities, a default value of 200 in is suggested when this information is not
otherwise available.

The algorithm should not be used when the visibility is greater than 7 kin,
when there is no cloud ceiling, or when the cloud ceiling is above 1 km.
There is such a paucity of data for these cases than an extension to these
regimes is not currently warranted. As more information on the vertical
distributions of aerosols in the planetary boundary layer and the visibility
vertical structure becomes available, these difficulties will be overcome.

The vertical profiles used to develop this algorithm are from tethered balloon
flights, all of which are for altitudes of less than 800 in (above the launch
site). There is a lack of data to determine what the upper bound on ceiling
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heights should be. It is recommended that if the cloud ceiling height is
above 1000 m (i.e., nominally above the planetary boundary layer), then the
algorithmn should not be used.

The case of surface haze layers and shallow radiation fogs, which can
significantly reduce horizontal visibility, is being studied further at ASL.
In this case, a cloud ceiling is usually not present, and the visibility
improves rather than degrades with increasing altitude. While the overall
frequency of occurrence of this type of vertical structure is probably larger
than that for the case where the algorithm is applicable, the impact on
certain types of system performance is less, because the transmittance along
the air-to-surface slant path is greater than along the equivalent horizontal
surface path. Current research and data-gathering efforts are being carried
out at ASL to develop an algorithm for this type of vertical structure.

In summary, an algorithmn of simple analytical form has been developed, which
describes the vertical structure for low visibility/low ceiling conditions.
The utility of this algorithmn is that it relates the vertical structure to
surface observations of visibility and cloud ceiling height. These latter
quantities are commonly recorded in meteorological observations taken
throughout the world. The visible extinction coefficient and LWC have been
used as parameters for the algorithmn. The visibility itself or extinction
coefficients at other wavelengths could have been used just as well. Appendix
C provides a succinct set of tables of coefficients for the algorithmi for the
parameters of visibility, O.551um, 4.Oum, and 1O.61im extinction coefficients,
and LWC.
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APPENDIX A

VISIBILITY DEFINITION

A brief statement on the use of the term "visibility" is in order. Three
terms are commnonly used: visibility, visual range, and meteorological
range. The latter two have precise definitions,' although all three are often
used interchangeably. The visual range, R., may be defined as

R = =-11n, (A-i
v a e C (A1

where a is the extinction coefficient in the visual wavelength band, C is the
inherent contrast of the target against the background, and e is the threshold
contrast of the observer. The meteorological range, Rm, is defined as above
for the case where a black target is against the background, so that C=1, and
where the visual contrast threshold is taken as c=0.02, a near-optimum value
for daylight conditions. Thus,

R n .3.912RM e 0.02 a e (A-2)

The meteorological range is often taken as the "visibility," but it should be
clear that this is an optimum visibility.

In practice, the visual range is a more useful quantity because it allows for
a target/background contrast of less than unity and/or a threshold contrast of
more than 2 percent. Many visibility meters are calibrated on the basis of an
assumed "observer" threshold contrast of 5 percent (or a comqynation of target
contrast and perceptual threshold contrast so that C/c U -- ). The visual
range would be

Rv - 1n 1 3.00
v e 0.05 ae -(A-3)

The visual range defined in this manner is a slightly more conservative
estimate than the meteorological range (R. = 0.766 R,,), but it correlates
better with the visibility reported in meteorological observations. 2 The term

'MctCartney, E. J., Optics of the Atmosphere, John Wiley and Sons, Inc., New
York, 1976.
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Nvisibility" in the text is used in this sense of visual range. Conversions
from extinction coefficient to visibility, such as in figures 3a, 4a, and 7,
were made using equation (A-3).

"Gordon, J. I., Daytime Visibility: A Conceptual Review, AFGL-TR-79-0257, Air
Force Geophysics Laboratory, Hanscomb AFB, MA, 1979.
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APPENDIX B

COMPUTATION OF LIQUID WATER CONTENTS AND LIQUID WATER
CONTENT LAPSE RATES FOR MOIST ADIABATIC PROCESSES

LWC and its lapse rates were obtained by computing the change in the water
vapor saturation mixing ratio (ARs) over a specified height interval (10 m)
and then converting that change to LWC and aLWC/&Z. The equations used were

T(Z) = TO - Yw Z (B-i)

T(Z)) (g 9-PM= Po (-To-) Tyw (Po in mbar) (B-2)

0

e s(Z) (6.11 mbar) exp -- ( 1 - 7) (B-3)
R

es(Z)
R (Z) = .622 ( Z) (B-4)

s (R) -R (Z) (B-5)

(Z)= 1/2(P(Z) + ) x (100) (100 is a conversion
Ta) TMT 70factor for the mixture(B-6)

0- of units used here)

ALWC = Pa ARs (g/m) (B-7)

LWC a(LWC) + LWC o  (B-B)

aLWC/aZ - a(LWC)A T(B-9)
where Rs = water vapor saturation mixing ratio

Z = height (meters)

T = absolute temperature (degrees Kelvin)
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yw = moist adiabatic lapse rate (. 0.6°C/100 m)

g = gravitational acceleration 9.806 m s-

R = gas constant for air 2.8704 x 10"' J/g K

es = saturation vapor pressure for water (millibars)

L = latent heat of condensation 2.485 x 10' J/g

R* = universal gas constant 8.3144 J/K mol

mv = molecular weight of water vapor 18.016 g mol_1

Pa = air density (1,275 g/m' at Po = 1000 mbar and To = OC

)o = values at the initial reference level (i.e., P0 = 1000 mbar and
selected Tn , LWCo = 0.0234 g/ms), or values at the previous
reference ?evel.
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APPENDIX C

TABULARIZED ALGORITHM COEFFICIENTS

This appendix contains the tables of coefficients for the vertical structure
algorithm. The derivations for the 0.55um extinction coefficient and the LWC
are given in the text. The tabularized values for the visibility are taken
directly from the O.55um extinction coefficient via the relationship (see also
appendix A)

3.0

Vis =e (0.55um) (C-I)

The tabularized values for the 4.Ourm and 1O.6um extinction coefficients are
derived from the parametrized data in an earlier report by Duncan and
associates.'

'Duncan, L. 0., J. 0. Lindberg and R. B. Loveland, An Empirical Model of the
Vertical Structure of German Fogs, ASL-TR-0071, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM, 1980.
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TABLE C-i. VISIBILITY (Vis)

Vis = A exp[B exp(Cz)]

Range of 7.5 to 0.42 km 0.42 to 0.03 km
Applicability Haze/Fog Thick Fog/Cloud

A 7.54 km 0.0326 km

B 1n(D/A) ln(D/A)

C lc n(D/A) -0.014 m

D visibility at visibility at surface
surface (or at cloud boundary:

0.425 km)

E 0.425 km (not used)

zc cloud ceiling (not used)2
height' (meters)

'If the cloud ceiling height is greater than 1 km, the algorithm should
probably not be used.

2 If the height of the fog top or the cloud thickness is not known, assign a
default value of 200 m and use this portion of the algorithm only over that
interval.
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TABLE C-2. 0.55um EXTINCTION COEFFICIENT

e (O.55m) = A exp[B exp(Cz)]

Range of 0.398 to 7.08 km 7.08 to 92.1 km"'

Applicability Haze/Fog Thick Fog/Cloud

A 0.398 km" 92.1 km-'

B ln(D/A) ln(D/A)

1 n(E/A)

Zc ln~ln(D/A) -0.014 m

D initial value at initial value at surface
surface (or at cloud boundary:

7.08 km-

E 7.08 km (not used)
z cloud ceiling height' (not used)'

(meters)

'If the cloud ceiling height is greater than I km, the algorithm should
probaoly not be used.

'If the height of the fog top or the cloud thickness is not known, assign a
default value of 200 m and use this portion of the algorithm only over that
Interval.
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TABLE C-3. 4.Oum EXTINCTION COEFFICIENT

Ge(4 .Oum) = A exp[B exp(Cz)]

Range of 3.16(-2)* to 3.32 km-r 3.32 to 92.1 km"|
Applicability Haze/Fog Thick Fog/Cloud

A 3.16(-2) km-' 92.1 km-'

B ln(D/A) ln(D/A)

C n[ ln(E/A) -0.014 m

D initial value at initial value at surface
surface (or at cloud boundary:

3.32 km-

E 3.32 km-' (not used)
Zc cloud ceiling height' (not used)'

(meters)

*3.16(-2) 3.16 x 10"a

'If the cloud ceiling height is greater than 1 kin, the algorithm should
probably not be used.

"If the height of the fog top or the cloud thickness is not known, assign a
default value of 200 m and use this portion of the algorithm only over that
interval.
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TABLE C-4. 1O.6um EXTINCTION COEFFICIENT

oe(1O.6jm) = A exp[B exp(Cz)]

Range of 1.0(-2)* to 1.67 km"1 1.67 to 100 km-'

Applicability Haze/Fog Thick Fog/Cloud

A 0.01 km-  100 km-

B ln(D/A) ln(D/A)

1 r lnl(E/A),
C -1n _nln(D/A) 0.0125 m"

D initial value at initial value at surface
surface (or at cloud boundary:

1.67 km )

E 1.67 km- (not used)

z cloud ceiling height' (not used)'
(meters)

*1.0(-2) = 1.0 x 10_2

'If the cloud ceiling height is greater than 1 km, the algorithm should
probably not be used.

IIf the height for the fog top or the cloud thickness is not known, assign a
default value of 200 m and use this portion of the algorithm only over that
interval.

I3
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TABLE C-5. LIQUID WATER CONTENT

LWC = A exp[B exp(Cz)]

Range of 8.66(-5)* to 2.34(-2) g/o ?.34(-2) to 4.64(-1) g/m

Applicability Haze/Fog Thick Fog/Cloud

A 8.66(-5) g/m 4.64(-1) g/ml

B ln(D/A) ln(D/A)

1 l.n(E/A).,

C Zc InC n(-E-/A) -0.15 m-

D initial value at surface initial value at surface
(or at cloud boundary:
2.34(-2) g/m')

E 2.34(-2) g/m' (not used)

zc cloud ceiling height' (not used)2
(meters)

*8.66(-5) = 8.66 x 10"

'If the cloud ceiling height is greater than I kin, the algorithm should
probably not be used.

2 1f the height of the fog top or the cloud thickness is not known, assign a
default value of 200 m and use this portion of the algorithm only over that
interval.
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